长方体中. 点为AB中点. (I)求三棱锥的体积; (II)求证:平面; (III)求证: 平面.
设的内角所对的边分别为且.(1)求角的大小;(2)若,求的周长的取值范围.
如图,抛物线(a0)与双曲线相交于点A,B. 已知点A的坐标为(1,4),点B在第三象限内,且△AOB的面积为3(O为坐标原点).(1)求实数a,b,k的值;(2)过抛物线上点A作直线AC∥x轴,交抛物线于另一点C,求所有满足△EOC∽△AOB的点E的坐标.
某商店以6元/千克的价格购进某种干果1140千克,并对其进行筛选分成甲级干果与乙级干果后同时开始销售。这批干果销售结束后,店主从销售统计中发出:甲级干果与乙级干果在销售过程中每天都有销量,且在同一天卖完;甲级干果从开始销售至销售的第天的总销量(千克)与的关系为;乙级干果从开始销售至销售的第天的总销量(千克)与的关系为,且乙级干果的前三天的销售量的情况见下表:(1)求、的值;(2)若甲级干果与乙级干果分别以8元/千克的6元/千克的零售价出售,则卖完这批干果获得的毛利润是多少元?(3)问从第几天起乙级干果每天的销量比甲级干果每天的销量至少多6千克?(说明:毛利润=销售总金额-进货总金额。这批干果进货至卖完的过程中的损耗忽略不计)
如图,⊙与⊙相交于点A和B,经过A作直线与⊙相交于D,与⊙相交于C,设弧的中点为M,弧的中点为N,线段CD的中点为K. 求证:
(1)已知,求的值。(2)已知是方程的一个根,试求的值。