求两条渐近线为且截直线所得弦长为的双曲线方程。
(本题满分12分)在如图的多面体中,⊥平面,,,,,,,是的中点.(Ⅰ) 求证:平面;(Ⅱ) 求证:;(Ⅲ) 求二面角的余弦值.
(本题满分12分)一厂家向用户提供的一箱产品共件,其中有件次品,用户先对产品进行抽检以决定是否接收.抽检规则是这样的:一次取一件产品检查(取出的产品不放回箱子),若前三次没有抽查到次品,则用户接收这箱产品;若前三次中一抽查到次品就立即停止抽检,并且用户拒绝接收这箱产品.(Ⅰ)求这箱产品被用户接收的概率;(Ⅱ)记抽检的产品件数为,求随机变量的分布列和数学期望.
(本题满分12分) 在中,分别是角的对边,,.(Ⅰ)求的值;(Ⅱ)若,求边的长.
设函数,的两个极值点为,线段的中点为.(1) 如果函数为奇函数,求实数的值;当时,求函数图象的对称中心;(2) 如果点在第四象限,求实数的范围;(3) 证明:点也在函数的图象上,且为函数图象的对称中心.
设函数(1)设,,证明:在区间内存在唯一的零点;(2)设为偶数,,,求的最小值和最大值;(3)设,若对任意,有,求的取值范围;