已知圆,坐标原点为O.圆C上任意一点A在x轴上的射影为点B,已知向量.(1)求动点Q的轨迹E的方程;(2)当时,设动点Q关于x轴的对称点为点P,直线PD交轨迹E于点F(异于P点),证明:直线QF与x轴交于定点,并求定点坐标.
已知向量=(cosx,sinx),=(cos,sin)(0).设函数f(x)=·,且f(x)+为偶函数. (1)求的值;(2)求f(x)的单调增区间.
在△ABC中,角A,B,C所对的边分别为a,b,c,且满足cos=,·=3,若c=1,求a的值.
给出下列命题: (1)存在实数,使sincos=1;(2)存在实数,使sin+cos=; (3)y=sin(-2x)是偶函数;(4)x=是函数y= sin(2x+)的一条对称轴的方程;(5)若、是第一象限角,且,则sinsin;其中所有的正确命题的序号是 .
如图,函数y=2sin(x+)(其中xR,0)的图象与y轴交于点(0,1). (1)求的值; (2)设P是图象上的最高点,M、N是图象与x轴的交点,求与的夹角.
一根杆子长,任意地将其折成几段,如果折段点为(1)一个;(2)二个,而且杆子折段在任何位置是等可能的,试求每段杆子的长度均不少于10的概率。