设椭圆的焦点分别为、,直线:交轴于点,且.(1)试求椭圆的方程;(2)过、分别作互相垂直的两直线与椭圆分别交于、、、四点(如图所示),试求四边形面积的最大值和最小值.
已知曲线C1的极坐标方程为,曲线C2的极坐标方程为,曲线C1,C2相交于点M,N。(1)将曲线C1,C2的极坐标方程化为直角坐标方程;(2)求线段MN的长。
如图,已知中,AB=BC,以AB为直径的⊙O交AC于点D,过D作,垂足为E,连结OE。若,分别求AB,OE的长。
对于集合M,定义函数对于两个集合M,N,定义集合. 已知A={2,4,6,8,10},B={1,2,4,8,16}.(Ⅰ)写出和的值,并用列举法写出集合;(Ⅱ)用Card(M)表示有限集合M所含元素的个数.(ⅰ)求证:当取得最小值时, ;(ⅱ)求的最小值
已知椭圆的右顶点,离心率为,为坐标原点.(Ⅰ)求椭圆的方程;(Ⅱ)已知(异于点)为椭圆上一个动点,过作线段的垂线交椭圆于点,求的取值范围.
已知函数.(Ⅰ)求的单调区间;(Ⅱ)是否存在实数,使得对任意的,都有?若存在,求的取值范围;若不存在,请说明理由.