在图一所示的平面图形中,是边长为 的等边三角形,是分别以为底的全等的等腰三角形,现将该平面图形分别沿折叠,使所在平面都与平面垂直,连接,得到图二所示的几何体,据此几何体解决下面问题.(1)求证:;(2)当时,求三棱锥的体积;(3)在(2)的前提下,求二面角的余弦值.
(本题满分15分) 已知函数, (1)求函数的定义域; (2)判断函数的奇偶性,并给予证明; (3)求不等式的解集.
(本题满分14分) 化简、求值下列各式: (1) (2)(注:)
(本题满分14分) 已知关于的方程的解集为,方程的解集为,若,求
(本小题满分14分) 已知二次函数满足:,,且该函数的最小值为1. ⑴ 求此二次函数的解析式; ⑵ 若函数的定义域为= .(其中). 问是否存在这样的两个实数,使得函数的值域也为?若存在,求出的值;若不存在,请说明理由.
(本小题满分13分) 有一批单放机原价为每台80元,两个商场均有销售,为了吸引顾客,两商场纷纷推出优惠政策。甲商场的优惠办法是:买一台减4元,买两台每台减8元,买三台每台减12元,......,依此类推,直到减到半价为止;乙商场的优惠办法是:一律7折。某单位欲为每位员工买一台单放机,问选择哪个商场购买比较划算?