(本小题满分12分)甲、乙二名射击运动员参加今年深圳举行的第二十六届世界大学生夏季运动会的预选赛,他们分别射击了4次,成绩如下表(单位:环):
(1)从甲、乙两人的成绩中各随机抽取一个,求甲的成绩比乙高的概率;(2)现要从中选派一人参加决赛,你认为选派哪位运动员参加比较合适?请说明理由.
各项均为正数的数列的前项和为,满足. (1)求数列的通项公式; (2)若数列满足,数列满足,数列的前项和为,求; (3)若数列,甲同学利用第(2)问中的,试图确定的值是否可以等于2011?为此,他设计了一个程序(如图),但乙同学认为这个程序如果被执行会是一个“死循环”(即程序会永远循环下去,而无法结束),你是否同意乙同学的观点?请说明理由.
如图,在四棱锥中,底面是矩形.已知. (1)证明平面; (2)求异面直线与所成的角的大小; (3)求二面角的大小.
已知向量,其中且, (1)当为何值时,; (2)解关于的不等式.
(理科)已知是底面边长为1的正四棱柱,是和的交点. ⑴设与底面所成的角的大小为,二面角的大小为,试确定与的一个等量关系,并给出证明; ⑵若点到平面的距离为,求正四棱柱的高.
(文科)已知是底面边长为1的正四棱柱,高.求: ⑵异面直线与所成的角的大小(结果用反三角函数表示); ⑵ 四面体的体积.