某售货员负责在甲、乙、丙三个柜面上售货.如果在某一小时内各柜面不需要售货员照顾的概率分别为0.9,0.8,0.7.假定各个柜面是否需要照顾相互之间没有影响,求在这个小时内:(1)只有丙柜面需要售货员照顾的概率;(2)三个柜面最多有一个需要售货员照顾的概率;(3)三个柜面至少有一个需要售货员照顾的概率.
正方体ABCD-A1B1C1D1中,E、F分别是BB1,CC1的中点,求异面直线AE和BF所成角的大小.
如图,△ABC和△DBC所在的两个平面互相垂直,且AB=BC=BD,∠ABC=∠DBC=120°,求(1) A、D连线和直线BC所成角的大小;(2) 二面角A-BD-C的大小
已知平面α⊥平面β,交线为AB,C∈,D∈,,E为BC的中点,AC⊥BD,BD=8.①求证:BD⊥平面;②求证:平面AED⊥平面BCD;③求二面角B-AC-D的正切值.
两个正方形ABCD和ABEF所在的平面互相垂直,求异面直线AC和BF所成角的大小.
设S为平面外的一点,SA=SB=SC,,若,求证:平面ASC平面ABC。