(本小题满分15分)已知椭圆C:的离心率为,左、右焦点分别为,点在椭圆C上,且,的面积为.(Ⅰ)求椭圆的方程;(Ⅱ)直线与椭圆相交于,两点.点,记直线的斜率分别为,当最大时,求直线的方程.
已知函数,其中是自然对数的底数. (1)证明:是上的偶函数; (2)若关于的不等式在上恒成立,求实数的取值范围; (3)已知正数满足:存在,使得成立,试比较与的大小,并证明你的结论.
如图:为保护河上古桥,规划建一座新桥,同时设立一个圆形保护区,规划要求,新桥与河岸垂直;保护区的边界为圆心在线段上并与相切的圆,且古桥两端和到该圆上任一点的距离均不少于,经测量,点位于点正北方向处,点位于点正东方向处,(为河岸),. (1)求新桥的长; (2)当多长时,圆形保护区的面积最大?
如图在平面直角坐标系中,分别是椭圆的左右焦点,顶点的坐标是,连接并延长交椭圆于点,过点作轴的垂线交椭圆于另一点,连接. (1)若点的坐标为,且,求椭圆的方程; (2)若,求椭圆离心率的值.
如图在三棱锥 P - A B C 中, D , E , F 分别为棱 P C , A C , A B 的中点,已知 P A ⊥ A C , P A = 6 , B C = 8 , D F = 5 . 求证:
(1)直线 P A / / 平面 D E F ; (2)平面 B D E ⊥ 平面 A B C .
已知. (1)求的值; (2)求