设椭圆的中心在原点,坐标轴为对称轴, 一个焦点与短轴两端点的连线互相垂直,且此焦点与长轴上较近的端点距离为-4,求此椭圆方程、离心率、准线方程及准线间的距离.
已知函数f(x)=x+sin x.(1)设P,Q是函数f(x)图像上相异的两点,证明:直线PQ的斜率大于0;(2)求实数a的取值范围,使不等式f(x)≥axcos x在上恒成立.
已知函数f(x)=x2-2acos kπ·ln x(k∈N*,a∈R,且a>0).(1)讨论函数f(x)的单调性;(2)若k=2 04,关于x的方程f(x)=2ax有唯一解,求a的值.
已知函数f(x)=|ax-2|+bln x(x>0,实数a,b为常数).(1)若a=1,f(x)在(0,+∞)上是单调增函数,求b的取值范围;(2)若a≥2,b=1,求方程f(x)=在(0,1]上解的个数.
已知函数f(x)=ln x+2x,g(x)=a(x2+x).(1)若a=,求F(x)=f(x)-g(x)的单调区间;(2)若f(x)≤g(x)恒成立,求实数a的取值范围.
已知函数f(x)=x3-ax2-3x.(1)若f(x)在[1,+∞)上是增函数,求实数a的取值范围;(2)若x=3是f(x)的极值点,求f(x)的单调区间.