已知椭圆的中心在原点,焦点在x轴上,一个顶点A(0,-1),且右焦点到右准线的距离为.(1)求椭圆的方程.(2)试问是否能找到一条斜率为k(k≠0)的直线l,使l与椭圆交于不同两点M、N且满足|AM|=|AN|?若这样的直线存在,求出k的取值范围;若不存在,请说明理由.
在平面直角坐标系中,椭圆的中心为原点,焦点在轴上,离心率为,过点的直线交椭圆于两点,且的周长为16,求椭圆的标准方程.
已知双曲线:的离心率,、为其左右焦点,点在上,且,,是坐标原点.(1)求双曲线的方程;(2)过的直线与双曲线交于两点,求的取值范围.
袋中有6个球,其中4个白球,2个红球,从袋中任意取出两球,求下列事件的概率:(1)A:取出的两球都是白球;(2)B:取出的两球1个是白球,另1个是红球.
如图,在棱长为1的正方体中,点分别是的中点.(1)求证:.(2)求与所成角的余弦值.
20名学生某次数学考试成绩(单位:分)的频率分布直方图如图所示.(1)求频率分布直方图中的值;(2)分别求出成绩落在[50,60)与[60,70)中的学生人数.