设椭圆的中心是坐标原点,长轴在x轴上,离心率e=,已知点P(0,)到这个椭圆上点的最远距离为,求这个椭圆方程,并求椭圆上到点P的距离为的点的坐标.
(本题共2小题,每小题8分,满分16分) 数列的前项和为,数列的前项的和为,为等差数列且各项均为正数,,,. (1)求证:数列是等比数列; (2)若,,成等比数列,求.
某化工厂引进一条先进生产线生产某种化工产品,其生产的总成本(万元)与年产量(吨)之间的函数关系式可以近似地表示为,已知此生产线年产量最大为210吨. (1)求年产量为多少吨时,生产每吨产品的平均成本最低,并求最低成本; (2)若每吨产品平均出厂价为40万元,那么当年产量为多少吨时,可以获得最大利润?最大利润是多少?
(本题共2小题,每小题7分,满分14分)设函数的图象为、关于点A(2,1)的对称的图象为,对应的函数为. (1)求函数的解析式; (2)若直线与只有一个交点,求的值并求出交点的坐标
(本题共2小题,每小题6分,满分12分) 已知,且 (1)若,求; (2)若,求实数的取值范围.
抛物线上纵坐标为的点到焦点的距离为2. (Ⅰ)求的值; (Ⅱ)如图,为抛物线上三点,且线段,,与轴交点的横坐标依次组成公差为1的等差数列,若的面积是面积的,求直线的方程.