求以椭圆=1的顶点为焦点,且一条渐近线的倾斜角为的双曲线方程.
某厂根据市场需求开发折叠式小凳(如图所示). 凳面为三角形的尼龙布,凳脚为三根细钢管. 考虑到钢管的受力和人的舒适度等因素,设计小凳应满足:① 凳子高度为,② 三根细钢管相交处的节点与凳面三角形重心的连线垂直于凳面和地面. (1)若凳面是边长为的正三角形,三只凳脚与地面所成的角均为,确定节点分细钢管上下两段的比值;(2)若凳面是顶角为的等腰三角形,腰长为,节点分细钢管上下两段之比为. 确定三根细钢管的长度.
(本小题满分12分) 甲、乙两人在一场五局三胜制的象棋比赛中,规定甲或乙无论谁先赢满三局就获胜,并且比赛就此结束.现已知甲、乙两人每比赛一局甲取胜的概率是,乙取胜的概率为,且每局比赛的胜负是独立的,试求下列问题:(Ⅰ)比赛以甲3胜1而结束的概率;(Ⅱ)比赛以乙3胜2而结束的概率;(Ⅲ)设甲获胜的概率为a,乙获胜的概率为b,求a:b的值.
(本小题满分12分)如图,已知正方形ABCD和矩形ACEF所在平面互相垂直, AB=,AF=1,M是线段EF的中点。 (Ⅰ)求证:AM∥平面BDE; (Ⅱ) 求二面角A-DF-B的大小.
(本小题满分12分)学习小组有6个同学,其中4个同学从来没有参加过数学研究性学习活动,2个同学曾经参加过数学研究性学习活动.(1)现从该小组中任选2个同学参加数学研究性学习活动,求恰好选到1个曾经参加过数学研究性学习活动的同学的概率;(2)若从该小组中任选2个同学参加数学研究性学习活动,活动结束后,求该小组没有参加过数学研究性学习活动的同学个数取2,3,4时的概率
(本小题满分12分)如图,在棱长为2的正方体的中点,P为BB1的中点.(I)求证;(II)求异面直线所成角的大小;