两点(1)求△AOB面积的最小值及此时直线方程(O为原点)(2)求直线在两坐标轴上截距之和的最小值
已知椭圆的离心率为,右焦点也是抛物线的焦点。 (1)求椭圆方程; (2)若直线与相交于、两点。 ①若,求直线的方程; ②若动点满足,问动点的轨迹能否与椭圆存在公共点?若存在,求出点的坐标;若不存在,说明理由。
已知函数(). (1)当时,求函数在上的最大值和最小值; (2)当函数在单调时,求的取值范围; (3)求函数既有极大值又有极小值的充要条件。
等差数列的各项均为正数,,前项和为,为等比数列, ,且. (1)求与; (2)求数列的前项和。 (3)若对任意正整数和任意恒成立,求实数的取值范围.
(本小题满分12分) 如图,在长方体中,,为的中点,为的中点。 (1)证明:; (2)求与平面所成角的正弦值。
在中,内角对边的边长分别是,且满足,。 (1)时,若,求的面积. (2)求的面积等于的一个充要条件。