抛物线经过点、与点,其中,,设函数在和处取到极值。(1)用表示;(2)比较的大小(要求按从小到大排列);(3)若,且过原点存在两条互相垂直的直线与曲线均相切,求。
如图,地图上有一竖直放置的圆形标志物,圆心为C,与地面的接触点为G.与圆形标志物在同一平面内的地面上点P处有一个观测点,且PG=50m.在观测点正前方10m处(即PD=10m)有一个高位10m(即ED=10m)的广告牌遮住了视线,因此在观测点所能看到的圆形标志的最大部分即为图中从A到F的圆弧. (1)若圆形标志物半径为25m,以PG所在直线为X轴,G为坐标原点,建立直角坐标系,求圆C和直线PF的方程; (2)若在点P处观测该圆形标志的最大视角(即)的正切值为,求该圆形标志物的半径.
已知直线与圆相交于A,B两点,弦AB的中点为 (1)求实数的取值范围以及直线的方程; (2)若以AB为直径的圆过原点O,求圆C的方程.
在中,,D是边BC上一点, (1)求的值; (2)求的值
已知函数(其中为常数,且)的部分图像如图所示. (1)求函数的解析式 (2)若求的值
选修4-5:不等式选讲 设函数,其中,为实数. (1)若,解关于的不等式; (2)若,证明: