函数。(1)求的周期;(2)解析式及在上的减区间;(3)若,,求的值。
在等比数列中,已知. (1)求数列的通项公式. (2)若分别为等差数列的第3项和第5项,试求数列的前项和.
设函数(其中). (1) 当时,求函数的单调区间; (2) 当时,求函数在上的最大值.
已知圆C的方程为,过点M(2,4)作圆C的两条切线,切点分别为A,B, 直线AB恰好经过椭圆T:(a>b>0)的右顶点和上顶点. (1)求椭圆T的方程; (2)已知直线l:y=kx+(k>0)与椭圆T相交于P,Q两点,O为坐标原点, 求△OPQ面积的最大值.
如图,正方形ADEF与梯形ABCD所在平面互相垂直,AD⊥CD,AB//CD,AB=AD=,点M在线段EC上且不与E、C垂合. (1)当点M是EC中点时,求证:BM//平面ADEF; (2)当平面BDM与平面ABF所成锐二面角的余弦值为时,求三棱锥M—BDE的体积
已知等比数列满足且是的等差中项 (1)求数列的通项公式;(2)若求使成立的正整数的最小值.