(1)设为攻关期满时获奖的攻关小组数,求的分布列及;(2)设为攻关期满时获奖的攻关小组数与没有获奖的攻关小组数之差的平方,记“函数在定义域内单调递减”为事件,求事件的概率
正四棱锥中,,点M,N分别在PA,BD上,且.(Ⅰ)求异面直线MN与AD所成角;(Ⅱ)求证:∥平面PBC;(Ⅲ)求MN与平面PAB所成角的正弦值.
将一枚骰子(形状为正方体,六个面上分别标有数字1,2,3,4,5,6的玩具)先后抛掷两次,骰子向上的点数依次为.(1)求的概率;(2)求的概率P;(3)试将右侧求⑵中概率P的伪代码补充完整
已知抛物线的顶点在坐标原点,它的准线经过双曲线:的一个焦点且垂直于的两个焦点所在的轴,若抛物线与双曲线的一个交点是.(1)求抛物线的方程及其焦点的坐标;(2)求双曲线的方程及其离心率.
设p:实数x满足,其中,命题实数满足.(Ⅰ)若且为真,求实数的取值范围;(Ⅱ)若是的充分不必要条件,求实数的取值范围.
已知函数,其中,在及处取得极值,其中.(1)求证:;(2)求证:点的中点在曲线上.