统计某校100名学生的数学会考成绩,得到样本频率分布直方图如右图示,规定不低于60分为及格,不低于85分为优秀,(1)估计这次考试的及格人数和优秀率;( 2)从成绩是分以下(包括分)的学生中选两人,求他们不在同一分数段的概率.
已知分别是椭圆的左、右焦点,椭圆的离心率. (I)求椭圆的方程;(II)已知直线与椭圆有且只有一个公共点,且与直线相交于点.求证:以线段为直径的圆恒过定点.
已知函数. (I)求的单调区间; (II)设,若在上单调递增,求的取值范围.
已知四棱锥中,侧棱底面,且底面是边长为2的正方形,,与相交于点. (I)证明:; (II)求三棱锥的体积.
已知等差数列的首项为,公差为,且不等式的解集为. (I)求数列的通项公式; (II)若,求数列前项和.
已知函数. (I)当时,求的最大值和最小值; (II)设的内角所对的边分别为,且,若向量与向量共线,求的值.