如图, C D 为 ∆ A B C 外接圆的切线, A B 的延长线交直线 C D 于点 D , E , F 分别为弦 A B 与弦 A C 上的点,且 B C · A E = D C · A F , B , E , F , C 四点共圆.
证明:
(Ⅰ) C A 是 ∆ A B C 外接圆的直径; (Ⅱ)若 D B = B E = E A .求过 B , E , F , C 四点的圆的面积与 ∆ A B C 外接圆面积的比值.
已知椭圆的离心率为,右焦点为,斜率为的直线与椭圆交于两点,以为底边作等腰三角形,顶点为.(1)求椭圆的方程;(2)求的面积.
在数列中,,且. 求,猜想的表达式,并加以证明.
如图,在四棱锥中,底面为直角梯形,,,底面,且,分别为的中点.求与平面所成的角.
某工厂甲、乙两个车间包装同一种产品,在自动包装传送带上每隔1小时抽一包产品,称其重量(单位:克)是否合格,分别记录了6个抽查数据,获得重量数据的茎叶图如图4.(1)根据样品数据,计算甲、乙两个车间产品重量的均值与方差,并说明哪个车间的产品的重量相对较稳定;(2)若从乙车间6件样品中随机抽取两件,求所抽取的两件样品的重量之差不超过2克的概率.
已知函数为偶函数,其图象上相邻的两个最低点间的距离为.(1)求的解析式;(2)若,求的值.