完成下列填空.(1)(2)
设函数,已知曲线在点处的切线方程是.(1)求的值;并求出函数的单调区间;(2)求函数在区间上的最值.
对于三次函数,定义是的导函数的导函数,若方程有实数解,则称点为函数的“拐点”,可以证明,任何三次函数都有“拐点”,任何三次函数都有对称中心,且“拐点”就是对称中心,请你根据这一结论判断下列命题:①任意三次函数都关于点对称:②存在三次函数,若有实数解,则点为函数的对称中心;③存在三次函数有两个及两个以上的对称中心;④若函数,则: 其中所有正确结论的序号是( ).
已知向量=(sin(+x),cosx),="(sinx,cosx)," f(x)= ·.(1)求f(x)的最小正周期和单调增区间;(2)如果三角形ABC中,满足f(A)=,求角A的值.
如图,在四棱锥P-ABCD中,底面ABCD是∠DAB=60°,且边长为a的菱形,侧面PAD为正三角形,其所在平面垂直底面ABCD.(1)若G为AD边的中点,求证:BG⊥平面PAD;(2)求证:AD⊥PB;(3)若E为BC边的中点,能否在棱PC上找到一点F,使平面DEF⊥平面ABCD,并证明你的结论.
已知函数处取得极小值-4,使其导函数的取值范围为(1,3)。(1)求的解析式及的极大值;(2)当的最大值。