如图,从点 P 1 ( 0 , 0 ) 作 x 轴的垂线交曲线 y = e x 于点 Q 1 ( 0 , 1 ) ,曲线在 Q 1 点处的切线与 x 轴交于点 P 2 ,再从 P 2 作 x 轴的垂线交曲线于点 Q 2 ,依次重复上述过程得到一系列点: P 1 , Q 1 ; P 2 , Q 2 ; … ; P n , Q n ,记 P k 点的坐标为 ( x k , 0 ) ( k = 1 , 2 , … , n ) .
(Ⅰ)试求 x k 与 x k - 1 的关系( 2 ≤ k ≤ n ) (Ⅱ)求 P 1 Q 1 + P 2 Q 2 + P 3 Q 3 + . . . + P n Q n
(本小题满分12分) 在中,角的对边分别为,,. (1) 求及的值. (2) 若,求.
(本小题满分10分)选修4-5:不等式选讲 已知函数. (Ⅰ)当时,求函数的定义域; (Ⅱ)若关于的不等式的解集是,求的取值范围.
已知极坐标系的极点在直角坐标系的原点处,极轴与轴的正半轴重合. 直线的参数方程为:(t为参数),曲线的极坐标方程为:. (Ⅰ)写出的直角坐标方程,并指出是什么曲线; (Ⅱ)设直线与曲线相交于、两点,求值.
已知函数 (Ⅰ)当时,求的单调区间; (Ⅱ)若对任意, 恒成立,求实数的取值范围.
已知椭圆的短轴长等于焦距,椭圆C上的点到右焦点的最短距离为. (Ⅰ)求椭圆C的方程; (Ⅱ)过点且斜率为的直线与交于、两点,是点关于轴的对称点,证明:三点共线.