求过点A(1,-1),B(-1,1)且圆心在直线x+y-2=0上的圆的方程.
在平面直角坐标系 x O y 中,求过椭圆 x = 5 cos φ y = 3 sin φ φ 为参数 的右焦点且与直线 x = 4 - 2 t y = 3 - t ( t 为参数)平行的直线的普通方程。
已知矩阵 A = 1 1 2 1 ,向量 β = 1 2 ,求向量 α ,使得 A 2 α = β .
如图,圆 O 1 与圆 O 2 内切于点 A ,其半径分别为 r 1 与 r 2 r 1 > r 2 ,圆 O 1 的弦 A B 交圆 O 2 于点 C ( O 1 不在 A B 上),
求证: A B : A C 为定值。
S n + k + S n - k = 2 ( S n + S k ) 设 M 为部分正整数组成的集合,数列 a n 的首项 a 1 = 1 ,前 n 项和为 S n .已知对任意整数 k 属于 M ,当 n > k 时, S n + k + S n - k = 2 ( S n + S k ) 都成立。
(1)设 M = 1 , a 2 = 2 ,求 a 5 的值; (2)设 M = 3 , 4 ,求数列 a n 的通项公式。
已知 a , b 是实数,函数 f x = x 3 + a x , f ` x 和 g ` x 是 f x 的导函数,若 f ` x g ` x ≥ 0 在区间I上恒成立,则称 f x 和 g x 在区间I上单调性一致 (1)设 a > 0 ,若函数 f x 和 g x 在区间 [ - 1 , + ∞ ) 上单调性一致,求实数 b 的取值范围; (2)设 a < 0 且 a ≠ b ,若函数 f x 和 g x 在以 a , b 为端点的开区间上单调性一致,求 a - b 的最大值。