已知半径为5的圆的圆心在轴上,圆心的横坐标是整数,且与直线相切.(1)求圆的方程;(2)设直线与圆相交于两点,求实数的取值范围;(3)在(2)的条件下,是否存在实数,使得过点的直线垂直平分弦?存在,求出实数的值;若不存在,请说明理由.
设命题p:在区间(1,+∞)上是减函数;命题q:x1,x2是方程x2-ax-2=0的两个实根,且不等式m2+5m-3≥|x1-x2|对任意的实数a∈[-1,1]恒成立.若p∧q为真,试求实数m的取值范围.
已知集合A={x|1<ax<2},集合B={x||x|<1}.当AB时,求a的取值范围.
已知函数,当时,. (1)若函数在区间上存在极值点,求实数a的取值范围; (2)如果当时,不等式恒成立,求实数k的取值范围; (3)试证明:.
已知椭圆 (1)求椭圆C的标准方程。 (2)过点Q(0,)的直线与椭圆交于A、B两点,与直线y=2交于点M(直线AB不经过P点),记PA、PB、PM的斜率分别为k1、k2、k3,问:是否存在常数,使得若存在,求出名的值:若不存在,请说明理由.
已知数列为等差数列,其公差d不为0,和的等差中项为11,且,令,数列的前n项和为. (1)求及; (2)是否存在正整数m,n(1<m<n),使得成等比数列?若存在,求出所有的m,n的值;若不存在,请说明理由.