(1)函数的解析式. (2)求出函数的单调递增区间与对称轴方程,对称中心坐标;(3)当时,求函数的值域
某中学举办安全法规知识竞赛,从参赛的高一、高二学生中各抽出人的成绩作为样本.对高一年级的名学生的成绩进行统计,并按分组,得到成绩分布的频率分布直方图(如图).(Ⅰ)若规定60分以上(包括60分)为合格,计算高一年级这次知识竞赛的合格率;(Ⅱ)统计方法中,同一组数据常用该组区间的中点值作为代表,据此,估计高一年级这次知识竞赛的学生的平均成绩;(Ⅲ)若高二年级这次知识竞赛的合格率为60%,由以上统计数据填写下面列联表,并问是否有99%的把握认为“这次知识竞赛的成绩与年级有关系”。
参考数据与公式:由列联表中数据计算的公式
临界值表
(本小题满分12分)若函数的图象与直线相切,相邻切点之间的距离为.(Ⅰ)求的值;(Ⅱ)若点是图象的对称中心,且,求点的坐标.
已知抛物线C的顶点在原点,焦点为F(0,1),且过点A(2,t),(1)求t的值;(2)若点P、Q是抛物线C上两动点,且直线AP与AQ的斜率互为相反数,试问直线PQ的斜率是否为定值,若是,求出这个值;若不是,请说明理由.
已知函数在处取得极值5,(1)求的值;(2)求函数的单调递减区间(3)求函数在区间上的最大值
在中,角、、所对应的边分别为、、,且满足(1)求角C的值;(2)若,求面积的最大值