已知圆和直线,直线,都经过圆C外定点A(1,0).(Ⅰ)若直线与圆C相切,求直线的方程;(Ⅱ)若直线与圆C相交于P,Q两点,与交于N点,且线段PQ的中点为M,求证:为定值.
如图,四边形ABCD中,AB⊥AD,AD∥BC,AD=6,BC=4,AB=3,点E、F分别在BC、AD上,EF∥AB.现将四边形ABEF沿EF折起,使平面ABEF平面EFDC,设AD中点为P.(Ⅰ)当E为BC中点时,求证:CP∥平面ABEF;(Ⅱ)设BE=x,当x为何值时,三棱锥A-CDF的体积有最大值?并求出这个最大值.
已知函数.(Ⅰ)求函数在上的值域;(Ⅱ)若对于任意的,不等式恒成立,求.
某电视台2012年举办了“中华好声音”大型歌手选秀活动,过程分为初赛、复赛和决赛,经初赛进入复赛的40名选手被平均分成甲、乙两个班。下面是根据这40名选手参加复赛时获得的100名大众评审的支持票数制成的茎叶图:赛制规定:参加复赛的40名选手中,获得的支持票数排在前5名的选手可进入决赛,若第5名出现并列,则一起进入决赛;另外,票数不低于95票的选手在决赛时拥有“优先挑战权”。(Ⅰ)分别求出甲、乙两班的大众评审的支持票数的中位数、众数与极差;从进入决赛的选手中随机抽出3名,求其中恰有1名拥有“优先挑战权”的概率.
已知为数列的前项和,且.(Ⅰ)求数列的通项公式;(Ⅱ)若,求数列的前n项和.
已知函数,, 若恒成立,实数的最大值为.(1)求实数.(2)已知实数满足且的最大值是,求的值.