⑴当时,求函数的值域;⑵若函数在定义域上是减函数,求的取值范围;⑶求函数在x∈(0,1]上的最大值及最小值,并求出函数取最值时的值
某风景区在一个直径AB为100米的半圆形花园中设计一条观光线路(如图所示).在点A与圆 弧上的一点C之间设计为直线段小路,在路的两侧边缘种植绿化带;从点C到点B设计为沿弧的弧形小路,在路的一侧边缘种植绿化带.(注:小路及绿化带的宽度忽略不计) (1)设(弧度),将绿化带总长度表示为的函数; (2)试确定的值,使得绿化带总长度最大.
在△ABC中,角A,B,C所对的边分别为a,b,c.若,. (1)求的值; (2)求函数的值域.
如图,在五面体ABCDEF中,四边形ABCD是矩形,DE⊥平面ABCD. (1)求证:AB∥EF; (2)求证:平面BCF⊥平面CDEF.
各项均为正数的数列对一切均满足.证明: (1); (2).
在平面直角坐标系中,已知定点F(1,0),点在轴上运动,点在轴上,点 为平面内的动点,且满足,. (1)求动点的轨迹的方程; (2)设点是直线:上任意一点,过点作轨迹的两条切线,,切点分别为,,设切线,的斜率分别为,,直线的斜率为,求证:.