如下图所示,在直角坐标系中,射线在第一象限,且与轴的正半轴成定角,动点在射线上运动,动点在轴的正半轴上运动,的面积为.(Ⅰ)求线段中点的轨迹的方程;(Ⅱ)是曲线上的动点, 到轴的距离之和为,设为到轴的距离之积.问:是否存在最大的常数,使恒成立?若存在,求出这个的值;若不存在,请说明理由.
(本小题满分12分)如图,在四棱锥S—ABCD中,底面ABCD,底面ABCD是矩形,且,E是SA的中点。 (1)求证:平面BED平面SAB; (2)求平面BED与平面SBC所成二面角(锐角)的大小。
(本小题满分12分)张师傅驾车从公司开往火车站,途径4个交通岗,这4个交通岗将公司到火车站分成5个时段,每个时段的驾车时间都是3分钟,如果遇到红灯要停留1分钟。假设他在各交通岗遇到红灯是相互独立的,并且概率都是 (1)求张师傅此行程时间不小于16分钟的概率; (2)记张师傅此行程所需时间为Y分钟,求Y的分布列和均值。
(本小题满分12分)在等比数列中, (1)求数列的通项公式; (2)设数列的前项和为,求
(本小题满分14分)已知函数对任意,都有. (1)求和的值; (2)若数列满足:则数列是等差数列吗?请给予证明。 (3)令,试比较与的大小。
(本小题满分14分)已知向量,,其中设函数. (1)若的最小正周期为,求函数的单调递减区间; (2)若函数图像的一条对称轴为,求的值。