如下图所示,在直角坐标系中,射线在第一象限,且与轴的正半轴成定角,动点在射线上运动,动点在轴的正半轴上运动,的面积为.(Ⅰ)求线段中点的轨迹的方程;(Ⅱ)是曲线上的动点, 到轴的距离之和为,设为到轴的距离之积.问:是否存在最大的常数,使恒成立?若存在,求出这个的值;若不存在,请说明理由.
如图,三棱锥A-BCD中,∠BCD=90°,BC=CD=1,AB⊥平面BCD,∠ADB=60°,E,F分别是AC,AD上的动点,且=λ(0<λ<1). (1)求证:不论λ为何值,总有平面BEF⊥平面ABC; (2)当λ为何值时,平面BEF⊥平面ACD..
在直四棱柱ABCDA1B1C1D1中,底面ABCD是菱形.求证:平面B1AC∥平面DC1A1.
如图,在四棱锥PABCD中,M、N分别是侧棱PA和底面BC边的中点,O是底面平行四边形ABCD的对角线AC的中点.求证:过O、M、N三点的平面与侧面PCD平行.
如图,在三棱锥SABC中,平面SAB⊥平面SBC,AB⊥BC,AS=AB,过A作AF⊥SB,垂足为F,点E、G分别是棱SA、 SC的中点.求证: (1)平面EFG∥平面ABC; (2)BC⊥SA.
如图,在四棱锥PABCD中,底面ABCD是正方形,侧面PAD⊥底面ABCD,且PA=PD=AD.若E、F分别为PC、BD的中点,求证: (1)EF∥平面PAD; (2)EF⊥平面PDC.