求直线被圆截得的弦的长.
已知函数. (1)求函数的单调递增区间; (2)记△的内角、、所对的边长分别为、、,若,△的面积,,求的值.
已知圆内有一点,为过点且倾斜角为的弦, (1)当时,求弦的长. (2)当弦被点平分时,求出弦所在直线的方程.
设为关于n的k次多项式.数列{an}的首项,前n项和为.对于任意的正整数n,都成立. (1)若,求证:数列{an}是等比数列; (2)试确定所有的自然数k,使得数列{an}能成等差数列
若函数为定义域上单调函数,且存在区间(其中),使得当时,的取值范围恰为,则称函数是上的正函数,区间叫做等域区间. (1)已知是上的正函数,求的等域区间; (2)试探究是否存在实数,使得函数是上的正函数?若存在,请求出实数的取值范围;若不存在,请说明理由.
若椭圆()过点,离心率为,的圆心为原点,直径为椭圆的短轴,的方程为,过上任一点作的切线,,切点为,。 (1)求椭圆的方程; (2)若直线与的另一交点为,当弦最大时,求直线的方程; (3)求的最大值与最小值。