求与圆关于直线对称的圆的方程.
选修4-1:几何证明选讲 在中,AB=AC,过点A的直线与其外接圆交于点P,交BC延长线于点D. (1)求证:; (2)若AC=3,求的值.
已知椭圆:的左、右顶点分别为,,为短轴的端点,△的面积为,离心率是. (Ⅰ)求椭圆的方程; (Ⅱ)若点是椭圆上异于,的任意一点,直线,与直线分别交于,两点,证明:以为直径的圆与直线相切于点 (为椭圆的右焦点).
已知函数在处的切线斜率为零. (Ⅰ)求和的值; (Ⅱ)求证:在定义域内恒成立; (Ⅲ) 若函数有最小值,且,求实数的取值范围.
如图1,在边长为的正三角形中,,,分别为,,上的点,且满足.将△沿折起到△的位置,使二面角成直二面角,连结,.(如图2) (Ⅰ)求证:⊥平面; (Ⅱ)求直线与平面所成角的大小.
某工厂生产甲、乙两种产品,甲产品的一等品率为,二等品率为;乙产品的一等品率为,二等品率为.生产件甲产品,若是一等品,则获利万元,若是二等品,则亏损万元;生产件乙产品,若是一等品,则获利万元,若是二等品,则亏损万 元.两种产品生产的质量相互独立. (Ⅰ)设生产件甲产品和件乙产品可获得的总利润为(单位:万元),求的分布列; (Ⅱ)求生产件甲产品所获得的利润不少于万元的概率.