已知数列{an}的前n项和为Sn,且an是Sn与2的等差中项,数列{an}中,b1=1,点P(bn,bn+1)在直线x-y+2=0上.(Ⅰ) 求数列{an},{bn}的通项公式an和bn;(Ⅱ) 设cn=an•bn,求数列{cn}的前n项和Tn
设函数,为常数. (1)若的图象中相邻两对称轴之间的距离不小于,求的取值范围; (2)若的最小正周期为,且当时,的最大值是,又,求的值.
如图,两块直角三角板拼在一起,已知,. (1)若记,,试用,表示向量、; (2)若,求.
已知在同一平面内,且. (1)若,且,求的值; (2)若,且,求向量与的夹角.
一只不透明的袋子中装有颜色分别为红、黄、蓝、白的球各一个,这些球除颜色外都相同. (1)求搅匀后从中任意摸出1个球,恰好是红球的概率; (2)搅匀后从中任意摸出1个球,记录下颜色后放回袋子中并搅匀,再从中任意摸出1个球,求至少有一次摸出的球是红球的概率.
在的展开式中,把叫做三项式系数. (1)当n=2时,写出三项式系数的值; (2)类比二项式系数性质,给出一个关于三项式系数的相似性质,并予以证明; (3)求的值.