设分别是椭圆:的左、右焦点,过倾斜角为的直线 与该椭圆相交于P,两点,且.(Ⅰ)求该椭圆的离心率;(Ⅱ)设点 满足,求该椭圆的方程.
已知f(x)=logax,g(x)=2loga(2x+t-2)(a>0,a≠1,t∈R). (1)当t=4,x∈[1,2],且F(x)=g(x)-f(x)有最小值2时,求a的值; (2)当0<a<1,x∈[1,2]时,有f(x)≥g(x)恒成立,求实数t的取值范围.
已知函数。 (1)求的最小正周期和单调递增区间; (2)将按向量平移后图像关于原点对称,求当最小时的。
设集合A={x|x2-3x+2=0},B={x|x2+2(a+1)x+(a2-5)=0}. (1)若A∩B={2},求实数a的值; (2)若A∪B=A,求实数a的取值范围.
画出不等式组表示的平面区域,并求出此不等式组的整数解.
预算用元购买单价为元的桌子和元的椅子,并希望桌椅的总数尽可能多,但椅子数不能少于桌子数,且不多于桌子数的倍.问:桌、椅各买多少才合适?