袋中有8个大小相同的小球,其中1个黑球,3个白球,4个红球.(I)若从袋中一次摸出2个小球,求恰为异色球的概率;(II)若从袋中一次摸出3个小球,且3个球中,黑球与白球的个数 都没有超过红球的个数,记此时红球的个数为,求的分布列及数学期望E.
等差数列的公差为,且成等比数列.(Ⅰ)求数列的通项公式;(Ⅱ)设,求数列的前项和.
已知函数,,⑴求函数的单调区间;⑵记函数,当时,在上有且只有一个极值点,求实数的取值范围;⑶记函数,证明:存在一条过原点的直线与的图象有两个切点
已知椭圆:的右焦点在圆上,直线交椭圆于、两点.(1)求椭圆的方程;(2)若(为坐标原点),求的值;(3)设点关于轴的对称点为(与不重合),且直线与轴交于点,试问的面积是否存在最大值?若存在,求出这个最大值;若不存在,请说明理由.
数列{}的前n项和为,,.(1)设,证明:数列是等比数列;(2)求数列的前项和;
如图,四棱锥中,底面为正方形,,平面,为棱的中点.(1)求证:平面平面; (2)求二面角的余弦值.(3)求点到平面的距离.