袋中有8个大小相同的小球,其中1个黑球,3个白球,4个红球.(I)若从袋中一次摸出2个小球,求恰为异色球的概率;(II)若从袋中一次摸出3个小球,且3个球中,黑球与白球的个数 都没有超过红球的个数,记此时红球的个数为,求的分布列及数学期望E.
设函数,若在点处的切线斜率为.(Ⅰ)用表示;(Ⅱ)设,若对定义域内的恒成立,(ⅰ)求实数的取值范围; (ⅱ)对任意的,证明:.
已知椭圆:的左焦点为,右焦点为.(Ⅰ)设直线过点且垂直于椭圆的长轴,动直线垂直于点P,线段的垂直平分线交于点M,求点M的轨迹的方程;(Ⅱ)设为坐标原点,取曲线上不同于的点,以为直径作圆与相交另外一点,求该圆的面积最小时点的坐标.
已知轴对称平面五边形(如图1),为对称轴,,,,将此图形沿折叠成直二面角,连接、得到几何体(如图2).(Ⅰ)证明:∥平面; (Ⅱ)求二面角的余弦值.
中,角所对的边分别为 且.(Ⅰ)求角的大小;(Ⅱ)若向量,向量,,,求的值.
已知函数().(Ⅰ)若的定义域和值域均是,求实数的值;(Ⅱ)若在区间上是减函数,且对任意的,,总有,求实数的取值范围.