求过点(2,3)且在两轴上截距相等的直线方程.
已知等差数列的前项和为,公差,,且成等比数列. (Ⅰ)求数列的通项公式; (Ⅱ)求数列的前项和公式.
在中,角A、B,C,所对的边分别为,且 (Ⅰ)求的值; (Ⅱ)若,求的面积.
已知函数, (Ⅰ)求的值; (Ⅱ)求的最大值和最小值.
已知平面内一动点P到点F(1,0)的距离与点P到y轴的距离的差等于1. (Ⅰ)求动点P的轨迹C的方程; (Ⅱ)过点F作两条斜率存在且互相垂直的直线l1,l2,设l1与轨迹C相交于点A,B,l2与轨迹C相交于点D,E,求的最小值.
设a为实数,函数f(x)=ex-2x+2a,x∈R. (Ⅰ)求f(x)的单调区间与极值; (Ⅱ)求证:当a>ln2-1且x>0时,ex>x2-2ax+1.