(本小题满分14分)已知抛物线、椭圆和双曲线都经过点,它们在轴上有共同焦点,椭圆和双曲线的对称轴是坐标轴,抛物线的顶点为坐标原点。(1)求这三条曲线的方程;(2)已知动直线过点,交抛物线于两点,是否存在垂直于轴的直线被以为直径的圆截得的弦长为定值?若存在,求出的方程;若不存在,说明理由。
已知数列是一个等差数列,是其前项和,且,. (1)求的通项; (2)求数列的前10项的和
为了研究某种细菌随时间x变化的繁殖个数,收集数据如下:
(1)作出这些数据的散点图; (2)求出y对x的回归方程.
设,圆:与轴正半轴的交点为,与曲线的交点为,直线与轴的交点为. (1)用表示和; (2)求证:; (3)设,,求证:.
当实数m为何值时,z=lg(m2-2m-2)+(m2+3m+2)i (1)为纯虚数; (2)为实数; (3)对应的点在复平面内的第二象限内.
已知关于的方程=1,其中为实数. (1)若=1-是该方程的根,求的值. (2)当>且>0时,证明该方程没有实数根.