(本小题满分14分)已知抛物线、椭圆和双曲线都经过点,它们在轴上有共同焦点,椭圆和双曲线的对称轴是坐标轴,抛物线的顶点为坐标原点。(1)求这三条曲线的方程;(2)已知动直线过点,交抛物线于两点,是否存在垂直于轴的直线被以为直径的圆截得的弦长为定值?若存在,求出的方程;若不存在,说明理由。
已知二次函数的图象经过坐标原点,其导函数为,数列的首项,点均在函数的图象上. (Ⅰ)求证是公比为2的等比数列. (Ⅱ)记bn=,求数列的前项和.
如图,是抛物线的焦点,过轴上的动点作直线的垂线. (Ⅰ)求证:直线与抛物线相切; (Ⅱ)设直线与抛物线相切于点,过点作直线的垂线,垂足为,求线段的长度以及动点的轨迹方程.
如图,在棱长为1的正方体中,、、分别是棱、、的中点. (Ⅰ)求证:; (Ⅱ)求点到平面的距离; (Ⅲ)求二面角的大小.
已知a、b、c分别是中角A、B、C的对边,,,D是边BA延长线上的点,且AD. (Ⅰ)求的值; (Ⅱ)求的大小.
已知的极坐标方程为.点的极坐标是. (Ⅰ)把的极坐标方程化为直角坐标参数方程,把点的极坐标化为直角坐标. (Ⅱ)点M()在上运动,点是线段的中点,求点运动轨迹的直角坐标方程.