设 a ∈ R ,函数 f x = a x 3 - 3 x 2 . (Ⅰ)若 x = 2 是函数 y = f x 的极值点,求 a 的值; (Ⅱ)若函数 g x = f x + f ` x , x ∈ 0 , 2 ,在 x = 0 处取得最大值,求 a 的取值范围.
若且,求证:
已知,求证
已知数列中各项为:
个
12、1122、111222、……、 ……,证明这个数列中的每一项都是两个相邻整数的积.
证明:若,则
我们将具有下列性质的所有函数组成集合M:函数,对任意均满足,当且仅当时等号成立。(1)若定义在(0,+∞)上的函数∈M,试比较与大小.(2)设函数g(x)=-x2,求证:g(x)∈M.