两人相约在7点到8点在某地会面,先到者等候另一个人20分钟方可离去. 试求这两人能会面的概率?
已知命题p:x∈[1,2],x2-a≥0;命题q:x0∈R,使得x+(a-1)x0+1<0.若“p或q”为真,“p且q”为假,求实数a的取值范围。
已知函数,.(1)若对任意的实数,函数与的图象在处的切线斜率总相等,求的值;(2)若,对任意,不等式恒成立,求实数的取值范围.
如图,直四棱柱ABCD–A1B1C1D1中,AB//CD,AD⊥AB,AB=2,AD=,AA1=3,E为CD上一点,DE=1,EC=3(1)证明:BE⊥平面BB1C1C;(2)求点到平面EA1C1的距离.
在中,角所对的边分别为,且满足(1)若,求的面积;(2)求的取值范围.
已知p:f(x)=,且|f(a)|<2;q:集合A={x|x2+(a+2)x+1=0,x∈R},且A≠Ø.若p∨q为真命题,p∧q为假命题,求实数a的取值范围.