(本小题满分14分)已知函数在上有定义,对任意实数和任意实数,都有. (Ⅰ)证明;(Ⅱ)证明(其中k和h均为常数);(Ⅲ)当(Ⅱ)中的时,设,讨论在内的单调性.
在一次运动会上,某单位派出了有6名主力队员和5名替补队员组成的代表队参加比赛.如果随机抽派5名队员上场比赛,将主力队员参加比赛的人数记为X,求随机变量X的概率分布以及随机变量X数学期望;(本题结果用分数表示即可)
如果展开式中第4项与第6项的系数相等,求n及展开式中的常数项.
椭圆的长轴长为4,焦距为2,F1、F2分别为椭圆的左、右焦点,直线过点且垂直于椭圆的长轴,动直线垂直于点,线段垂直平分线交于点(1)求椭圆的标准方程和动点的轨迹的方程。(2)过椭圆的右焦点作斜率为1的直线交椭圆于A、B两点,求的面积。(3)设轨迹与轴交于点,不同的两点在轨迹上,满足求证:直线恒过轴上的定点。
如图,在直三棱柱ABC—A1B1C1中,∠ACB=90°,AC=BC=CC1=2。
(1)证明:AB1⊥BC1;
本题10分)如图,河道上有一座抛物线型拱桥,在正常水位时,拱圈最高点距水面为8m,拱圈内水面宽16 m.,为保证安全,要求通过的船顶部(设为平顶)与拱桥顶部在竖直方向上高度之差至少要有0.5m.(1)一条船船顶部宽4m,要使这艘船安全通过,则船在水面以上部分高不能超过多少米?(2)近日因受台风影响水位暴涨2.7m,为此必须加重船载,降低船身,才能通过桥洞. 试问:一艘顶部宽m,在水面以上部分高为4m的船船身应至少降低多少米才能安全通过?