如图,已知正方形和矩形所在的平面互相垂直,,,是线段的中点.(Ⅰ)求三棱锥的体积;(Ⅱ)求证://平面;(Ⅲ)求异面直线与所成的角.
数列的前项和为,且是和的等差中项,等差数列满足,. (1)求数列、的通项公式; (2)设,数列的前项和为,证明:.
如图,边长为2的正方形中,点是的中点,点是的中点,将△、△分别沿、折起,使、两点重合于点,连接,. (1)求证:;(2)求点到平面的距离.
某校高三有甲、乙两个班,在某次数学测试中,每班各抽取5份试卷,所抽取的平均得分相等(测试满分为100分),成绩统计用茎叶图表示如下:
(1)求; (2)学校从甲班的5份试卷中任取两份作进一步分析,在抽取的两份样品中,求至多有一份得分在之间的概率.
已知函数. (1)求的最小正周期;(2)求的对称中心.
已知实数组成的数组满足条件: ①;②. (Ⅰ)当时,求,的值; (Ⅱ)当时,求证:; (Ⅲ)设,且,求证:.