已知矩形ABCD的边长AB=6cm,BC=4cm,在CD上截取CE=4cm,以BE为棱将矩形折起,使△BC′E的高C′F⊥平面ABED,求:(1)点C′到平面ABED的距离;(2)C′到边AB的距离;(3)C′到AD的距离.
如右图,在棱长为a的正方体ABCDA1B1C1D1中,G为△BC1D的重心,(1)试证:A1、G、C三点共线;(2)试证:A1C⊥平面BC1D;
如图所示,已知正方形ABCD和矩形ACEF所在的平面互相垂直,AB=,AF=1,M是线段EF的中点.求证:(1)AM∥平面BDE;(2)AM⊥平面BDF.
已知空间三点A(-2,0,2),B(-1,1,2),C(-3,0,4).设a=,b=.(1)求a和b的夹角θ;(2)若向量ka+b与ka-2b互相垂直,求k的值.
设数列{an}:1,-2,-2,3,3,3,-4,-4,-4,-4,…,(-1)k-1k,…,(-1),即当(k∈N*)时,an=(-1)k-1k,记Sn=a1+a2+…+an(n∈N*),用数学归纳法证明Si(2i+1)=-i(2i+1)(i∈N*).
设函数f(x)=x-xlnx,数列{an}满足0<a1<1,an+1=f(an).求证:(1)函数f(x)在区间(0,1)是增函数;(2)an<an+1<1.