已知,且,求证:
某选手在电视抢答赛中答对每道题的概率都是,答错每道题的概率都是,答对一道题积1分,答错一道题积分,答完道题后的总积分记为. (1)答完2道题后,求同时满足且的概率; (2)答完5道题后,求同时满足且的概率;
(12分)设直线与圆交于A、B两点,O为坐标原点,已知A点的坐标为.(Ⅰ)当原点O到直线的距离为时,求直线方程;(Ⅱ)当时,求直线的方程。
如图,在直三棱柱中, 已知,,,是的中点. (Ⅰ)求证:; (Ⅱ)求二面角的大小; (Ⅲ)求直线与平面所成角的正弦值.
(本小题满分14分)已知数列的前项和为,,,设. (Ⅰ)证明数列是等比数列; (Ⅱ)数列满足,设,若对一切不等式恒成立,求实数的取值范围.
(本小题满分14分)函数,其中,若存在实数,使得成立,则称为的不动点. (1)当,时,求的不动点; (2)若对于任何实数,函数恒有两个相异的不动点,求实数的取值范围; (3)在(2)的条件下,若函数的图像上两点的横坐标是函数的不动点,且直线是线段的垂直平分线,求实数的取值范围.