已知,且,求证:
已知向量。(1)求的最小正周期和单调减区间;(2)将函数的图象向右平移个单位,再将所得图象上各点的横坐标伸长到原来的2倍,纵坐标不变,得到函数的图象,在△ABC中,角A、B、C的对边分别为,若,求的值.
已知数列是等差数列,是等比数列,。(1)求数列、的通项公式;(2)设数列中,,求数列的前n项和Sn.
如图,菱形ABCD的边长为2,∠BAD=60º, M为AB边上不与端点重合的动点,且CM与DA分别延长后交于点N,若以菱形的对角线所在直线为坐标轴建立平面直角坐标系,并设BM=2t (0<t<1). (1)试用t表示与,并求它们所成角的大小; (2)设f(t)=·,g(t)=at+4-2a(a>0),分别根据以下条件,求出实数的取值范围: ①存在t1,t2∈(0,1),使得=g(t2); ②对任意t1∈(0,1),恒存在t2∈(0,1),使得=g(t2).
已知函数f(x)=x2·ln|x|(x≠0).(1)求f(x)的最值; (2)若关于x的方程f(x)=kx-1无实数解,求实数k的取值范围.
若,,为同一平面内互不共线的三个单位向量,并满足++=,且向量=x++(x+) (x∈R,x≠0,n∈N+).(1)求与所成角的大小;(2)记f(x)=||,试求f(x)的单调区间及最小值.