如图,四棱锥中,,底面为直角梯形,,点在棱上,且.(1)求异面直线与所成的角;(2)求证:平面;(3)求二面角的余弦值.
(本小题满分12分)对于函数, (1)求函数的定义域; (2)当为何值时,为奇函数; (3)写出(2)中函数的单调区间,并用定义给出证明.
(本小题满分12分)某公司生产一种电子仪器的固定成本为20000元,每生产一台仪器需增加投入100元,已知总收益满足函数:,其中是仪器的月产量, (1)将利润表示为月产量的函数; (2)当月产量为何值时,公司所获利润最大?最大利润是多少元?(总收益=总成本+利润).
(本小题满分12分)已知函数, (1)为何值时,有两个零点且均比-1大; (2)求在上的最大值.
(本小题满分10分)已知集合,. (1)求; (2)已知集合,若,求实数的取值范围.
已知实数a≠0,函数 (1)若,求,的值; (2)若,求的值.