已知函数,(其中且).(1)讨论函数的单调性;(2)若,求函数,的最值;(3)设函数,当时,若对于任意的,总存在唯一的,使得成立.试求的取值范围.
已知:“直线与圆相交”;:“方程的两根异号”.若为真,为真,求实数的取值范围.
(本小题满分12分)已知,,O为坐标原点,动点E满足:(Ⅰ) 求点E的轨迹C的方程;(Ⅱ)过曲线C上的动点P向圆O:引两条切线PA、PB,切点分别为A、B,直线AB与x轴、y轴分别交于M、N两点,求ΔMON面积的最小值.
(本小题满分12分)设函数(Ⅰ) 当时,求函数的最大值;(Ⅱ)当,,方程有唯一实数解,求正数的值.
(本小题满分12分)某校共有800名学生,高三一次月考之后,为了了解学生学习情况,用分层抽样方法从中抽出若干学生此次数学成绩,按成绩分组,制成如下的频率分布表:
(Ⅰ) 李明同学本次数学成绩为103分,求他被抽中的概率;(Ⅱ) 为了了解数学成绩在120分以上的学生的心理状态,现决定在第六、七、八组中用分层抽样方法抽取6名学生的成绩,并在这6名学生中在随机抽取2名由心理老师张老师负责面谈,求第七组至少有一名学生与张老师面谈的概率;(Ⅲ) 估计该校本次考试的数学平均分。
(本小题满分12分)如图:四棱锥P-ABCD中,底面ABCD是平行四边形,∠ACB=90°,平面PAD⊥平面ABCD,PA=BC=1,PD=AB=,E、F分别为线段PD和BC的中点.(Ⅰ) 求证:CE∥平面PAF;(Ⅱ) 在线段BC上是否存在一点G,使得平面PAG和平面PGC所成二面角的大小为60°?若存在,试确定G的位置;若不存在,请说明理由.