如图所示,已知直线与不共面,直线,直线,又平面,平面,平面,求证:三点不共线.
(本小题满分14分)已知函数..(Ⅰ)若,求函数的最大值;(Ⅱ)令,求函数的单调区间;(Ⅲ)若,正实数满足,证明.
(本小题满分13分)已知以C为圆心的动圆过定点,且与圆(B为圆心)相切,点C的轨迹为曲线T.设Q为曲线T上(不在x轴上)的动点,过点A作OQ(O为坐标原点)的平行线交曲线T于M,N两点.(Ⅰ)求曲线T的方程;(Ⅱ)是否存在常数,使总成立?若存在,求;若不存在,说明理由.
(本小题满分12分)已知数列的前项和为.(Ⅰ)求数列的通项公式;(Ⅱ)设集合,等差数列的任一项,其中是中的最小数,,求数列的通项公式.
(本小题满分12分)是边长为4的等边三角形,是等腰直角三角形,,平面平面ABD,且平面ABC,EC=2.(Ⅰ)证明:DE//平面ABC;(Ⅱ)证明:.
(本小题满分12分)某班50名学生在一次百米测试中,成绩全部介于13秒与18秒之间,将测试结果按如下方式分成五组:第一组,第二组, ,第五组.右图是按上述分组方法得到的频率分布直方图.按上述分组方法得到的频率分布直方图.(Ⅰ)若成绩大于或等于14秒且小于16秒认为良好,求该班在这次百米测试中成绩良好的人数;(Ⅱ)设m,n表示该班某两位同学的百米测试成绩,且已知求事件“”发生的概率.