在数列中,,且前n项的算术平均数等于第n项的2n-1倍()。(1)写出此数列的前5项;(2)归纳猜想的通项公式,并加以证明。
△ABC中内角A,B,C的对边分别为a,b,c,向量,且.(1)求锐角B的大小;(2)如果b=2,求△ABC的面积的最大值.
选修4-5:不等式选讲.设函数;(Ⅰ)当a=1时,解不等式.(Ⅱ)证明:.
选修4-4:坐标系与参数方程.在直角坐标系xoy中,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,已知曲线C的方程为,直线l的极坐标方程为2ρcosθ+ρsinθ-2=0.(Ⅰ)写出C的参数方程和直线l的直角坐标方程;(Ⅱ)设l与C的交点为,求过线段的中点且与l垂直的直线的极坐标方程.
已知函数.(1)若,求函数的单调区间;(2)若关于x的不等式在区间[1,2]上有解,求m的取值范围;(3)设是函数的导函数,是函数的导函数,若函数的零点为,则点恰好就是该函数的对称中心.若m=1,试求的值.
设是椭圆上的两点,已知向量,若且椭圆的离心率,短轴长为2,O为坐标原点.(Ⅰ) 求椭圆的方程;(Ⅱ)若直线AB过椭圆的焦点F(0,c),(c为半焦距),求直线AB的斜率k的值;(Ⅲ)试问:△AOB的面积是否为定值?如果是,请给予证明;如果不是,请说明理由.