已知函数=a+b+c的图像经过点(0,1),且在=1处的切线方程是y=-2.求的解析式;12分
已知椭圆的离心率,直线经过椭圆C的左焦点. (I)求椭圆C的方程; (II)若过点的直线与椭圆C交于A,B两点,设P为椭圆上一点,且满足(其中O为坐标原点),求实数t的取值范围.
已知等差数列的前n项和为,满足,为递增的等比数列,且是方程的两个根. (I)求数列,的通项公式; (II)若数列满足,求数列的前n项和.
如图,在三棱柱中,四边形都为矩形. (I)设D是AB的中点,证明:直线平面; (II)在中,若,证明:直线平面.
已知函数. (I)求函数的最小正周期; (II)将函数的图象向左平移个单位,得到函数的图象.在中,角A,B,C的对边分别为,若,求的面积.
某省为了研究雾霾天气的治理,一课题组对省内24个城市进行了空气质量的调查,按地域特点把这些城市分成了甲、乙、丙三组.已知三组城市的个数分别为4,8,12,课题组用分层抽样的方法从中抽取6个城市进行空气质量的调查. (I)求每组中抽取的城市的个数; (II)从已抽取的6个城市中任抽两个城市,求两个城市不来自同一组的概率.