某校学生会由高一年级5人,高二年级6人,高三年级4人组成.(1)选其中1人为学生会主席,有多少种不同的选法?(2)若每年级选1人为校学生会常委,有多少种不同的选法?(3)若要选出不同年级的两人参加市里组织的活动,有多少种不同的选法?
一副三角板拼成一个四边形ABCD,如图,然后将它沿BC折成直二面角. (1)求证: 平面ABD⊥平面ACD; (2)求AD与BC所成的角; (3)求二面角A—BD—C的大小.
设△ABC和△DBC所在的两个平面互相垂直,且AB=BC=BD,∠ABC=∠DBC=,求: (1)直线AD与平面BCD所成角的大小; (2)异面直线AD与BC所成的角; (3)二面角A—BD—C的大小.
已知四边形ABCD为直角梯形,AD∥BC,∠ABC=90°,PA⊥平面AC,且PA=AD=AB=1,BC=2 (1)求PC的长; (2)求异面直线PC与BD所成角的余弦值的大小; (3)求证:二面角B—PC—D为直二面角.
如图,为60°的二面角,等腰直角三角形MPN的直角顶点P在l上,M∈α,N∈β,且MP与β所成的角等于NP与α所成的角. (1)求证: MN分别与α、β所成角相等; (2)求MN与β所成角.
已知斜三棱柱ABC—A1B1C1中,A1C1=B1C1=2,D、D1分别是AB、A1B1的中点,平面A1ABB1⊥平面A1B1C1,异面直线AB1和C1B互相垂直. (1)求证: AB1⊥C1D1; (2)求证: AB1⊥面A1CD; (3)若AB1=3,求直线AC与平面A1CD所成的角.