如图,正三棱台的上、下两底边长之比为,连接,把正三棱台分成三个三棱锥,求这三个三棱锥的体积之比.
在 ∆ A B C 中, tan A = 1 4 , tan B = 3 5 . (Ⅰ)求角 C 的大小; (Ⅱ)若 ∆ A B C 最大边的边长为 17 ,求最小边的边长.
已知集合 A = a 1 , a 2 , … , a k k ≥ 2 ,其中 a i ∈ Z i = 1 , 2 , … , k ,由 A 中的元素构成两个相应的集合: S = a , b a ∈ A , b ∈ A , a + b ∈ A , T = a , b a ∈ A , b ∈ A , a - b ∈ A .其中是有序数对,集合 S 和 T 中的元素个数分别为 m 和 n .若对于任意的 a ∈ A ,总有 - a ∉ A ,则称集合 A 具有性质 P . (I)检验集合 0 , 1 , 2 , 3 与 - 1 , 2 , 3 是否具有性质 P 并对其中具有性质 P 的集合,写出相应的集合 S 和 T ; (II)对任何具有性质 P 的集合 A ,证明: n ≤ k k - 1 2 ; (III)判断 m 和 n 的大小关系,并证明你的结论.
如图,有一块半椭圆形钢板,其半轴长为 2 r ,短半轴长为 r ,计划将此钢板切割成等腰梯形的形状,下底 A B 是半椭圆的短轴,上底 C D 的端点在椭圆上,记 C D = 2 x ,梯形面积为 S .
(I)求面积 S 以 x 为自变量的函数式,并写出其定义域; (II)求面积 S 的最大值.
某中学号召学生在今年春节期间至少参加一次社会公益活动(以下简称活动).该校合唱团共有100名学生,他们参加活动的次数统计如图所示.
(I)求合唱团学生参加活动的人均次数; (II)从合唱团中任意选两名学生,求他们参加活动次数恰好相等的概率. (III)从合唱团中任选两名学生,用 ξ 表示这两人参加活动次数之差的绝对值,求随机变量 ξ 的分布列及数学期望 E ξ .
矩形 A B C D 的两条对角线相交于点 M ( 2 , 0 ) , A B 边所在直线的方程为 x - 3 y - 6 = 0 ,点 T ( - 1 , 1 ) 在 A D 边所在直线上. (I)求 A D 边所在直线的方程; (II)求矩形 A B C D 外接圆的方程; (III)若动圆 P 过点 N ( - 2 , 0 ) ,且与矩形 A B C D 的外接圆外切,求动圆 P 的圆心的轨迹方程.