某港口 O 要将一件重要物品用小艇送到一艘正在航行的轮船上,在小艇出发时,轮船位于港口 O 北偏西30°且与该港口相距20海里的 A 处,并正以30海里/小时的航行速度沿正东方向匀速行驶,经过 t 小时与轮船相遇。 (Ⅰ)若希望相遇时小艇的航行距离最小,则小艇航行速度的大小应为多少? (Ⅱ)假设小艇的最高航行速度只能达到30海里/小时,试设计航行方案(即确定航行方向和航行速度的大小),使得小艇能以最短时间与轮船相遇,并说明理由。
已知函数的定义域为,值域为,求的值。
已知函数,(1)求的定义域;(2)判断的奇偶性。
已知函数,判断的奇偶性和单调性。
设0≤x≤2,求函数y=的最大值和最小值.
求函数y=3的定义域、值域和单调区间.