已知正方体ABCD-A1B1C1D1. (1)求证:平面A1BD∥平面B1D1C;(2)若E、F分别是AA1、CC1的中点,求证:平面EB1D1∥平面FBD.
如图,已知⊙O的半径为1,MN是⊙O的直径,过M点作⊙O的切线AM,C是AM的中点,AN交⊙O于B点,若四边形BCON是平行四边形.(Ⅰ)求AM的长;(Ⅱ)求sin∠ANC.
已知函数f(x)=alnx+(a≠0)在(0,)内有极值.(I)求实数a的取值范围;(II)若x1∈(0,),x2∈(2,+∞)且a∈[,2]时,求证:f(x2)﹣f(x1)≥ln2+.
在平面直角坐标系中,已知椭圆:的离心率,且椭圆C上一点到点Q的距离最大值为4,过点的直线交椭圆于点(Ⅰ)求椭圆C的方程;(Ⅱ)设P为椭圆上一点,且满足(O为坐标原点),当时,求实数的取值范围.
如图,四边形PCBM是直角梯形,∠PCB=90°,PM∥BC,PM=1,BC=2.又AC=1,∠ACB=120°,AB⊥PC,直线AM与直线PC所成的角为60°.(1)求证:PC⊥AC;(2)求二面角M﹣AC﹣B的余弦值;(3)求点B到平面MAC的距离.
数列的前项和为,且是和的等差中项,等差数列满足,.(1)求数列、的通项公式;(2)设,数列的前项和为,证明:.