如图,在直角梯形ABCD中,∠A=∠D=90°,AB<CD,SD⊥平面ABCD,AB=AD=a,SD=2a. (1)求证:平面SAB⊥平面SAD;(2)设SB的中点为M,当为何值时,能使DM⊥MC?请给出证明.
从含有两件正品a1,a2和一件次品b1的3件产品中每次任取1件,每次取出后不放回,连续取两次.(1)求取出的两件产品中恰有一件次品的概率;(2)如果将“每次取出后不放回”这一条件换成“每次取出后放回”,则取出的两件产品中恰有一件次品的概率是多少?
设命题p:实数x满足x2-4ax+3a2<0,其中a>0,命题q:实数x满足(1)若a=1,且p∧q为真,求实数x的取值范围;(2)若p是q的必要不充分条件,求实数a的取值范围.
一个袋中有红、白两种球各若干个,现从中一次性摸出两个球,假设摸出的两个球至少有一个红球的概率为,至少一个白球的概率为,求摸出的两个球恰好红球白球各一个的概率.
已知抛物线上点到焦点的距离为4.(1)求,值;(2)设,是抛物线上分别位于轴两侧的两个动点,且(其中为坐标原点).求证:直线过定点,并求出该定点的坐标.
在数列中,已知,且().(1)求,,;(2)猜想数列的通项公式,并用数学归纳法证明.