如图,在直角梯形ABCD中,∠A=∠D=90°,AB<CD,SD⊥平面ABCD,AB=AD=a,SD=2a. (1)求证:平面SAB⊥平面SAD;(2)设SB的中点为M,当为何值时,能使DM⊥MC?请给出证明.
.已知函数 (1)求时的取值范围; (2)若且对任意成立; (ⅰ)求证是等比数列; (ⅱ)令,求证.
已知为实数, (Ⅰ)求导数; (Ⅱ)若,求在上的最大值和最小值; (Ⅲ)若在和上都是递增的,求的取值范围.
已知三棱锥中,,,,为上一点,,分别为的中点. (1)证明:; (2)求与平面所成角的大小.
三人独立破译同一份密码.已知三人各自破译出密码的概率分别 为且他们是否破译出密码互不影响. (1)求恰有二人破译出密码的概率; (2)“密码被破译”与“密码未被破译”的概率哪个大?说明理由.
已知圆C的圆心C(-1,2),且圆C经过原点。 (1)求圆C的方程 (2)过原点作圆C的切线,求切线的方程。 (3)过点的直线被圆C截得的弦长为,求直线的方程。