如图,设抛物线()的准线与轴交于,焦点为,以、为焦点,离心率的椭圆与抛物线在轴上方的一个交点为. (1)当时,求椭圆的方程;(2)在(1)的条件下,直线经过椭圆的右焦点,与抛物线交于、,如果以线段为直径作圆,试判断点与圆的位置关系,并说明理由;(3)是否存在实数,使得的边长是连续的自然数,若存在,求出这样的实数;若不存在,请说明理由.
(本小题满分12分)化简:
(本小题满分12分) 已知,与夹角为,求与夹角的余弦值。
(本小题满分16分) 已知函数,,. (1)当时,若函数在区间上是单调增函数,试求的取值范围; (2)当时,直接写出(不需给出演算步骤)函数()的单调增区间; (3)如果存在实数,使函数,()在处取得最小值,试求实数的最大值.
(本小题满分16分) 椭圆:的左、右顶点分别、,椭圆过点且离心率. (1)求椭圆的标准方程; (2)过椭圆上异于、两点的任意一点作轴,为垂足,延长到点,且,过点作直线轴,连结并延长交直线于点,线段的中点记为点. ①求点所在曲线的方程; ②试判断直线与以为直径的圆的位置关系, 并证明.
(本小题满分15分) 如图,在半径为的圆形(为圆心)铝皮上截取一块矩形材料,其中点在圆上,点、在两半径上,现将此矩形铝皮卷成一个以为母线的圆柱形罐子的侧面(不计剪裁和拼接损耗),设矩形的边长,圆柱的体积为. (1)写出体积关于的函数关系式,并指出定义域; (2)当为何值时,才能使做出的圆柱形罐子体积最大?最大体积是多少?